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Abstract: The infrared divergences of QCD scattering amplitudes can be derived from an

anomalous dimension Γ, which is a matrix in color space and depends on the momenta and

masses of the external partons. It has recently been shown that in cases where there are

at least two massive partons involved in the scattering process, starting at two-loop order

Γ receives contributions involving color and momentum correlations between three (and

more) partons. The three-parton correlations can be described by two universal functions

F1 and f2. In this paper these functions are calculated at two-loop order in closed analytic

form and their properties are studied in detail. Both functions are found to be suppressed

like O(m4/s2) in the limit of small parton masses, in accordance with mass factorization

theorems proposed in the literature. On the other hand, both functions are O(1) and

even diverge logarithmically near the threshold for pair production of two heavy particles.

As an application, we calculate the infrared poles in the qq̄ → tt̄ and gg → tt̄ scattering

amplitudes at two-loop order.
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1 Introduction

In the past few years, much progress has been achieved in the understanding of the infrared

(IR) singularities of massless scattering amplitudes in non-abelian gauge theories, which

are characterized by an intricate interplay of soft and collinear dynamics. While factoriza-

tion proofs guarantee the absence of IR divergences in inclusive observables [1], in many

cases large Sudakov logarithms remain after this cancellation. A detailed control over the

structure of IR poles in the virtual corrections to scattering amplitudes is a prerequisite

for the resummation of these logarithms beyond the leading order [2–5]. Catani was the

first to predict the singularities of two-loop scattering amplitudes apart from the 1/ǫ pole

term [6], whose general form was derived later in [7, 8]. An interesting alternative ap-

proach to the problem of IR singularities was developed in [9], where the authors exploited

the factorization properties of scattering amplitudes along with IR evolution equations to

recover Catani’s result at two-loop order and relate the coefficient of the 1/ǫ pole term to

a soft anomalous-dimension matrix. Surprisingly, the explicit calculation of the two-loop

anomalous-dimension matrix revealed that it has the same color and momentum structure

as at one-loop order [7, 8].

In recent work [10], it was shown that the IR singularities of on-shell amplitudes in

massless QCD are in one-to-one correspondence to the ultraviolet (UV) poles of operator

matrix elements in soft-collinear effective theory (SCET) [11–13]. They can be subtracted
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by means of a multiplicative Z factor, whose structure is constrained by the renormaliza-

tion group. It was argued that the simplicity of the corresponding anomalous-dimension

matrix holds not only at one- and two-loop order, but may in fact be an exact result of

perturbation theory. This possibility was raised independently in [14]. A non-trivial test

of this prediction at three-loop order was performed in [15]. Detailed theoretical argu-

ments supporting this conjecture were presented in [16], where constraints derived from

soft-collinear factorization, the non-abelian exponentiation theorem [17, 18], and the be-

havior of scattering amplitudes in two-parton collinear limits [19] were employed to show

that the anomalous-dimension matrix retains its simple form to three-loop order, with the

possible exception of a single structure multiplying a function of two linearly independent

conformal cross ratios built out of the momenta of four partons, which would have to vanish

in all collinear limits. It was also proved that the coefficient of the Sudakov logarithm in

the anomalous dimension obeys Casimir scaling at least through four-loop order.

It is interesting and relevant for many physical applications to generalize these results

to the case of massive partons. The IR singularities of one-loop scattering amplitudes

containing massive partons were obtained some time ago in [20], but until very recently

little was known about higher-loop results. In the limit where the parton masses are small

compared with the typical momentum transfer among the partons, mass logarithms can

be predicted based on collinear factorization theorems [21, 22]. This allows one to obtain

massive amplitudes from massless ones with a minimal amount of calculational effort. This

method has been verified for two-loop QED amplitudes [22] and QCD amplitudes describ-

ing top-quark pair production at hadron colliders [23, 24]. A major step toward solving

the problem of finding the IR divergences of generic two-loop scattering processes with

both massive and massless partons, without the restriction to the limit of small masses,

has been taken independently in [25] and [26]. Interestingly, one finds that the simplic-

ity of the anomalous-dimension matrix does not persist at two-loop order in the massive

case. Important constraints from soft-collinear factorization and two-parton collinear lim-

its are lost, and only the non-abelian exponentiation theorem restricts the color structures

appearing in the anomalous-dimension matrix. At two-loop order, two different types of

three-parton color and momentum correlations appear, whose effects can be parameterized

in terms of two universal, process-independent functions F1 and f2 defined in equation (2.5)

below. Apart from some symmetry properties, the precise form of these functions was left

unspecified in [25, 26].

The goal of this paper is to calculate and study these functions at two-loop order. A

brief account of our main findings was presented in [27]. In the following section we review

known facts about the structure of the anomalous-dimension matrix governing the IR

poles of scattering amplitudes in non-abelian gauge theories. Our main new contribution,

the calculation of the universal functions F1 and f2, is described in section 3, where we

also analyze some properties of these functions such as their analytic structure and their

behavior near threshold. Contrary to statements made in the literature, we find that F1

and f2 do not vanish in the limit where the velocities of two massive partons approach

each other. We then discuss the particularly interesting limit in which the parton masses

are small compared with the typical momentum transfers. We find that in this limit our
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results are compatible with factorization theorems proposed in [21, 22]. As an application

of our general results, we present in section 4 the anomalous-dimension matrices and Z

factors relevant for the parton scattering processes qq̄, gg → tt̄ + colorless particles, where

we allow for the presence of e.g. electroweak gauge bosons or Higgs bosons in the final

state. Using these results, we derive analytic formulae for all 1/ǫn pole terms at two-loop

order in the squared qq̄ → tt̄ and gg → tt̄ scattering amplitudes, some of which were so

far unknown or only known in numerical form. We attach these results in the form of a

computer program. In section 5 we study elastic quark-quark scattering in the forward

limit s,m2 ≫ |t|, in which our general expression for the anomalous-dimension matrix

reduces to the cross anomalous dimension studied a long time ago in [28]. This serves as a

non-trivial check of our calculation. Our main findings are summarized in the concluding

section 6.

2 General structure of the anomalous dimension

We denote by |Mn(ǫ, {p}, {m})〉 a UV-renormalized, on-shell n-parton scattering ampli-

tude with IR singularities regularized in d = 4 − 2ǫ dimensions. Here {p} ≡ {p1, . . . , pn}
and {m} ≡ {m1, . . . ,mn} denote the momenta and masses of the external partons. The

amplitude is a function of the Lorentz invariants sij ≡ 2σij pi · pj + i0 and p2
i = m2

i , where

the sign factor σij = +1 if the momenta pi and pj are both incoming or outgoing, and

σij = −1 otherwise. For massive partons (mi 6= 0), we define 4-velocities vi = pi/mi with

v2
i = 1 and v0

i ≥ 1. We further define the recoil variables wij ≡ −σij vi ·vj − i0. We use the

color-space formalism of [29, 30], in which n-particle amplitudes are treated as vectors in

color space. Ti is the color generator associated with the i-th parton and acts as an SU(N)

matrix on its color indices. Specifically, one assigns (T a
i )αβ = taαβ for a final-state quark

or an initial-state anti-quark, (T a
i )αβ = −taβα for a final-state anti-quark or an initial-state

quark, and (T a
i )bc = −ifabc for a gluon. We also use the notation Ti ·Tj ≡ T a

i T a
j summed

over a. Generators associated with different particles trivially commute, while T 2
i = Ci

is given in terms of the eigenvalue of the quadratic Casimir operator of the corresponding

color representation, i.e., Cq = Cq̄ = CF = N2−1
2N

for quarks and Cg = CA = N for gluons.

Below, we will label massive partons with capitalized indices (I, J, . . . ) and massless ones

with lower-case indices (i, j, . . . ). Note that color conservation implies the relation

∑

i

Ti +
∑

I

TI = 0 (2.1)

when acting on color-singlet states.

It was shown in [10, 16, 26] that the IR poles of such amplitudes can be removed by

a multiplicative renormalization factor Z−1(ǫ, {p}, {m}, µ), which acts as a matrix on the

color indices of the partons. More precisely, we have

Z−1(ǫ, {p}, {m}, µ) |Mn(ǫ, {p}, {m})〉
∣

∣

α
QCD
s →ξαs

= finite (2.2)

for ǫ → 0. The quantity αs denotes the strong coupling constant in the effective theory,

which is obtained after integrating out the heavy partons [26]. It is related to the coupling
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constant αQCD
s of full QCD via the decoupling relation αQCD

s = ξαs. In the relation

above, this matching relation must be applied to the scattering amplitude in full QCD, as

indicated. To first order in αs, the matching factor appropriate for nh heavy-quark flavors

in QCD reads [31]

ξ = 1 +
αs

3π
TF

nh
∑

i=1

[

eǫγE Γ(ǫ)

(

µ2

m2
i

)ǫ

− 1

ǫ

]

+ O(α2
s), (2.3)

with TF = 1
2 . Here mi denote the masses of the heavy quarks. Note that, as an alternative

to (2.2), one can convert the expression for the Z factor from the effective to the full theory

by replacing αs → ξ−1 αQCD
s . We will make use of this possibility in section 4 to predict

the IR poles of the qq̄ → tt̄ and gg → tt̄ amplitudes in full QCD.

The relation

Z−1(ǫ, {p}, {m}, µ)
d

d ln µ
Z(ǫ, {p}, {m}, µ) = −Γ({p}, {m}, µ) (2.4)

links the renormalization factor to a universal anomalous-dimension matrix Γ, which gov-

erns the scale dependence of effective-theory operators built out of collinear SCET fields for

the massless partons and heavy-quark effective theory (HQET [32]) fields for the massive

ones. For the case of massless partons, the anomalous dimension has been calculated at

two-loop order in [7, 8] and was found to contain only two-parton color-dipole correlations.

It has recently been conjectured that this result may hold to all orders of perturbation

theory [10, 14, 16]. On the other hand, when massive partons are involved in the scatter-

ing process, then starting at two-loop order correlations involving more than two partons

appear [25], the reason being that constraints from soft-collinear factorization and two-

parton collinear limits, which protect the anomalous dimension in the massless case, no

longer apply [26].

At two-loop order, the general structure of the anomalous-dimension matrix is [26]

Γ({p}, {m}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij
+
∑

i

γi(αs)

−
∑

(I,J)

TI · TJ

2
γcusp(βIJ , αs) +

∑

I

γI(αs) +
∑

I,j

TI · Tj γcusp(αs) ln
mIµ

−sIj

+
∑

(I,J,K)

ifabc T a
I T b

J T c
K F1(βIJ , βJK , βKI) (2.5)

+
∑

(I,J)

∑

k

ifabc T a
I T b

J T c
k f2

(

βIJ , ln
−σJk vJ · pk

−σIk vI · pk

)

+ O(α3
s) .

The one- and two-parton terms depicted in the first two lines start at one-loop order, while

the three-parton terms in the last two lines start at O(α2
s). Starting at three-loop order

also four-parton correlations would appear. The notation (i, j, . . . ) etc. refers to unordered

tuples of distinct parton indices. We have defined the cusp angles βIJ via

cosh βIJ =
−sIJ

2mImJ
= −σIJ vI · vJ − i0 = wIJ . (2.6)
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They are the hyperbolic angles formed by the time-like Wilson lines of two heavy partons.

The physically allowed values for wIJ are wIJ ≥ 1 (one parton incoming and one outgoing),

corresponding to βIJ ≥ 0, or wIJ ≤ −1 (both partons incoming or outgoing), corresponding

to βIJ = −b+iπ with real b ≥ 0.1 The first possibility corresponds to space-like kinematics,

in which case the universal functions in (2.5) are real. (For f2 phases can arise if some of the

variables vI · pk are time-like.) The second possibility corresponds to time-like kinematics,

in which case these functions have non-trivial absorptive parts. For academic purposes it

is sometimes useful to consider the analytic continuation of (2.6) to the Euclidean region

−1 < wIJ < 1, for which βIJ = ib with 0 < b < π is purely imaginary. The form

factors are real in this region, which however does not correspond to a physical scattering

process. Later in this work we will consider the large-recoil limit |wIJ | ≫ 1, which is

obtained whenever mImJ ≪ |sIJ |. In this limit we have βIJ = ln(2wIJ) up to O(1/w2
IJ )

power corrections.

The physically allowed values of the kinematical variables wIJ , wJK , and wKI entering

the function F1 are not arbitrary. To see this, note that in the rest frame of particle I

(where v0
I = 1) we have

vJ · vK = (vI · vJ) (vI · vK) − cos δ
√

(vI · vJ)2 − 1
√

(vI · vK)2 − 1 , (2.7)

where δ is the angle between ~vJ and ~vK , and all the scalar products satisfy vi · vj ≥ 1

by definition. Requiring that cos δ be in the range [−1, 1] leads to the condition

G(|wIJ |, |wJK |, |wKI |) ≥ 0 with

G(x, y, z) = 1 + 2xyz − (x2 + y2 + z2) . (2.8)

Since in a three-parton configuration there is always at least one pair of partons either

incoming or outgoing, at least one of the wIJ variables must be below −1, and hence the

function F1 is expected to have a non-zero imaginary part. For f2 there is no non-trivial

constraint on the allowed values of the kinematical variables, but also in this case there is

at least one time-like invariant, so a non-trivial imaginary part arises.

The anomalous-dimension coefficients γcusp(αs) and γi(αs) (for i = q, g) in (2.5) have

been determined to three-loop order in [16] by considering the cases of the massless quark

and gluon form factors. Of particular importance for our discussion is the cusp anomalous

dimension for light-like Wilson loops, whose two-loop expression is [33]

γcusp(αs) =
αs

π
+
(αs

π

)2
[(

67

36
− π2

12

)

CA − 5

9
TF nl

]

+ O(α3
s) , (2.9)

where nl is the number of massless quark flavors. Similarly, the coefficients γI(αs) for

massive quarks and color-octet partons such as gluinos have been extracted at two-loop

order in [26] by analyzing the anomalous dimension of heavy-light currents in SCET. In

addition, the velocity-dependent function γcusp(β, αs) in (2.5) was derived from the known

two-loop anomalous dimension of a current composed of two heavy quarks moving at

1This choice implies that sinh β =
√

w2 − 1. Alternatively, we could have used βIJ = b − iπ with b ≥ 0,

in which case sinh β = w
√

1 − w−2. We have confirmed that our results are the same in both cases.
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different velocity [33, 34]. A recent reanalysis of this anomalous dimension has led to the

compact form [35]

γcusp(β, αs) = γcusp(αs)β coth β (2.10)

+
CA

2

(αs

π

)2
{

π2

6
+ ζ3 + β2 + coth2 β

[

Li3(e
−2β) + β Li2(e

−2β) − ζ3 +
π2

6
β +

β3

3

]

+ coth β

[

Li2(e
−2β) − 2β ln(1 − e−2β) − π2

6
(1 + β) − β2 − β3

3

]

}

+ O(α3
s) .

In the limit of large cusp angle one finds

γcusp(β, αs) = γcusp(αs)β + O(e−2β) = γcusp(αs) ln(2w) + O
(

1

w2

)

. (2.11)

Our goal in the present work is to further explore the structure of the three-parton

correlation terms in (2.5), which are parameterized by two universal functions: F1(x, y, z),

which describes correlations involving three massive partons, is totally anti-symmetric in

its arguments, while f2(x, y), which parameterizes correlations between a pair of massive

partons and one massless parton, is an odd function of its second argument. The main

technical challenge is to calculate these functions analytically at two-loop order, which

involves the evaluation of a complicated, non-planar two-loop graph. This is the topic of

the next section.

3 Calculation of F1 and f2

Our strategy will be to first consider the function F1. To do so, we calculate the two-loop

anomalous-dimension matrix of the soft Wilson-line operator Os = Sv1
(0)Sv2

(0)Sv3
(0)

without imposing color conservation. This is important, since for three partons in a color-

singlet state, color conservation would imply that fabc T a
1 T b

2 T c
3 = −fabc T a

1 T b
2 (T c

1 +T c
2 ) =

0. The operator Os consists of three time-like Wilson lines

Sv(x) = P exp

(

−ig

∫ ∞

0
dt v · Aa

s(x + tv)T a

)

(3.1)

along the directions of the 4-velocities of three massive partons. The anomalous dimension

of this operator is given by

Γs({v}) =
3
∑

I=1

γI(αs) −
[

T1 · T2 γcusp(β12, αs) + permutations
]

+ 6ifabc T a
1 T b

2 T c
3 F1(β12, β23, β31) + O(α3

s) .

(3.2)

The function F1 follows from the coefficient of the 1/ǫ pole in the bare matrix element of

the operator. We will then obtain f2 from a limiting procedure.

– 6 –
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3.1 Color-space formalism for Wilson coefficients and operators

At this point a comment is in order concerning the color-space representation of on-shell

scattering amplitudes in full QCD, and of Wilson coefficients and operators defined in

the low-energy effective theory, which as mentioned earlier is a combination of SCET

and HQET. In the effective theory, n-jet processes are described in terms of an effective

Hamiltonian [16]

|Heff
n ({p}, {m})〉 =

∑

On({p}, {m}, µ) |Cn({p}, {m}, µ)〉 , (3.3)

where the short-distance Wilson coefficients are vectors in color space, whereas the oper-

ators On act as matrices on the color indices. The sum extends over all operators and

coefficients that are color conserving in the sense of relation (2.1). The sum also extends

over operators with different Dirac structure, but this point is irrelevant to our discus-

sion here. Taking the inner product of |Heff
n 〉 with a given color state 〈c | produces the

color-stripped amplitude 〈c |Heff
n 〉, which is a c-number in color space.

The renormalized operators On(µ) are related to the bare operators via a renormal-

ization factor Z, so that

On({p}, {m}, µ) = Obare
n (ǫ, {p}, {m})Z(ǫ, {p}, {m}, µ) . (3.4)

The definition of the anomalous-dimension matrix in (2.4) then implies the renormalization-

group equation

d

d ln µ
On({p}, {m}, µ) = −On({p}, {m}, µ)Γn({p}, {m}, µ) . (3.5)

Similarly, from the fact that the effective Hamiltonian in (3.3) is scale independent it

follows that

d

d ln µ
|Cn({p}, {m}, µ)〉 = Γn({p}, {m}, µ) |Cn({p}, {m}, µ)〉 . (3.6)

As explained in [10, 16], the parton scattering amplitudes in full QCD are given by

the on-shell parton matrix elements of the effective Hamiltonian. Denoting these matrix

elements by double brackets 〈〈. . . 〉〉, and using that on-shell parton matrix elements of

the bare operators Obare
n are scaleless in the effective theory and are thus given by their

tree-level expressions, we obtain

|Mn(ǫ, {p}, {m})〉 =
∑

〈〈Otree
n 〉〉Z(ǫ, {p}, {m}, µ) |Cn({p}, {m}, µ)〉 . (3.7)

The tree-level matrix elements are given in terms of products of on-shell spinors and po-

larization vectors and act as unit matrices in color space, 〈〈Otree
n 〉〉 = 〈〈Otree

n 〉〉1. It thus

follows that

|Mn({p}, {m}, µ)〉 ≡ lim
ǫ→0

Z−1(ǫ, {p}, {m}, µ) |Mn(ǫ, {p}, {m})〉

=
∑

〈〈Otree
n 〉〉 |Cn({p}, {m}, µ)〉

(3.8)

is the finite, subtracted amplitude introduced in (2.2). This quantity obeys the same

evolution equation (3.6) as the Wilson coefficients.

– 7 –
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3.2 Calculation of F1

Consider now the vacuum expectation value of the soft operator Os defined earlier. The

renormalization factor Zs for this operator is determined by the condition that 〈〈Obare
s 〉〉Zs

be UV finite, and its anomalous dimension Γs is then determined from (2.4). Here 〈〈Obare
s 〉〉

denotes the bare vacuum matrix element calculated in HQET. Since now we are interested

in the UV poles of these matrix elements, it is necessary to regularize IR singularities other

than in dimensional regularization (see below). At two-loop order, the above renormaliza-

tion condition gives
[

〈〈Obare
s 〉〉(0)Z(2)

s + 〈〈Obare
s 〉〉(1)Z(1)

s + 〈〈Obare
s 〉〉(2)

]

UV poles
= 0 , (3.9)

where here and below the superscripts in parenthesis refer in an obvious way to the order

in the expansion in powers of αs/4π. The tree-level matrix element is 〈〈Os〉〉(0) = 1.

The equation above thus expresses the two-loop renormalization factor Z
(2)
s in terms of

two contributions,

Z(2)
s = −

[

〈〈Obare
s 〉〉(2) + 〈〈Obare

s 〉〉(1)Z(1)
s

]

UV poles
. (3.10)

The function F1 is derived from the pole terms in Z
(2)
s with totally anti-symmetric color

structure, so we can limit the discussion to Feynman graphs involving the color genera-

tors of all three partons. Diagrammatically, the first contribution on the right-hand side

contains the UV poles of the planar and non-planar two-loop graphs shown in the first

row in figure 1. The second contribution corresponds to the UV poles of the one-loop

diagrams with a counterterm insertion, as illustrated in the second row of the figure. In

the calculation of the UV poles we regularize IR divergences by assigning residual external

momenta li to the Wilson lines, with ωi ≡ −vi · li > 0. While the planar and counterterm

contributions individually depend on the ωi regulators, their sum does not. Also, for con-

creteness we perform the calculation with three outgoing Wilson lines in the fundamental

representation. Afterwards we replace the color matrices arising from the Feynman rules

by ta → T a to convert to the color-space formalism. For an incoming line the color matrix

would get transposed, and in addition one would pick up a minus sign since the velocity

in the corresponding heavy-quark propagator is reversed. As a result, in this case the

correspondence would be (−ta)T → T a, in accordance with the rules given in [29, 30].

We find that the 1/ǫ pole terms in the sum of all diagrams can be written as

〈〈Obare
s 〉〉(2) + 〈〈Obare

s 〉〉(1)Z(1)
s = − 2

ǫ2

∑

(I,J,K)

(TI · TJ) (TI · TK) (βIJ coth βIJ) (βIK coth βIK)

− 3

2ǫ
ifabc T a

1 T b
2 T c

3 F
(2)
1 (β12, β23, β31) + . . . , (3.11)

where the dots represent finite terms and terms involving less than three different color

generators. The double pole is multiplied by a symmetric color structure and receives

contributions from the two-loop planar and one-loop counterterm diagrams only. It is given

by the square of the one-loop anomalous-dimension matrix, as required by renormalization-

group invariance [16]. We emphasize that the two-loop coefficient F
(2)
1 not only receives

– 8 –



J
H
E
P
1
1
(
2
0
0
9
)
0
6
2

v1

v2 v3

Figure 1. Two-loop Feynman graphs (top row) and one-loop counterterm diagrams (bottom row)

contributing to the two-loop renormalization factor Z
(2)
s .

a contribution from the non-planar, triple-gluon graph depicted in the first diagram in

figure 1, but also from the planar two-gluon diagrams and one-loop counterterm graphs.

In [25] a formal argument is sketched which suggests that the sum of the two planar two-

loop graphs shown in the first row in figure 1 has a vanishing coefficient multiplying the

anti-symmetric color structure due to a cancellation between two divergent integrals. We

find by explicit calculation that, irrespective of which IR regularization prescription is

adopted, such a cancellation does not take place. Instead, the contribution to F1 from the

planar and counterterm diagrams reads

F
(2) planar+CT
1 =

4

3

∑

I,J,K

ǫIJK βKI coth βKI coth βIJ

×
[

β2
IJ + 2βIJ ln(1 − e−2βIJ ) − Li2(e

−2βIJ ) +
π2

6

]

,

(3.12)

where the indices I, J,K run over permutations of (1, 2, 3). Moreover, as we shall see in sec-

tion 3.5, important cancellations take place when the planar and non-planar contributions

are combined.

We next consider the diagram with the triple gluon vertex, whose color factor

ifabc T a
1 T b

2 T c
3 is totally anti-symmetric. Apart from this factor, the contribution of this

diagram to F1 is given by the two-loop integral

(gsµ
ǫ)4
∫

ddk1

(2π)d
ddk2

(2π)d
ddk3

(2π)d
(2π)d δ(d)(k1 + k2 + k3)

× ǫIJK wIJ vK · kI

k2
1 k2

2 k2
3 (v1 · k1 − ω1)(v2 · k2 − ω2)(v3 · k3 − ω3)

=
2

ǫ

(αs

4π

)2
ǫIJK I(wIJ , wJK , wKI) + UV finite.

(3.13)
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The non-planar contribution to F1 is

F
(2) non−planar
1 =

4

3

∑

I,J,K

ǫIJK I(wIJ , wJK , wKI) . (3.14)

Introducing Feynman parameters and carrying out the loop momentum integrals, we obtain

I(w12, w23, w31) = (w23 w31 + w12)

∫

[dx][dy]x1y3 (x1x2 + x2x3 + x3x1)
−1 (3.15)

×
[

x1(y
2
2 + y2

3 + 2w23y2y3) + x2(y
2
3 + y2

1 + 2w31y3y1) + x3(y
2
1 + y2

2 + 2w12y1y2)
]−2

,

where [dx] ≡ dx1 dx2 dx3 δ(1− x1 − x2 − x3), and all integrals run from 0 to 1. This result

can be recast into the five-fold Mellin-Barnes representation

I(w12, w23, w31) = 2(w23 w31 + w12)
1

(2πi)5

∫ +i∞

−i∞

[ 5
∏

i=1

dzi

]

(2w23)
2z1−1(2w31)

2z2−1(2w12)
2z3

× Γ(1 − 2z1) Γ(1 − 2z2)

Γ(z1 + z2 + z3 + z4 + z5)
Γ(−2z3) Γ(−z4) Γ(z1 + z3) Γ(z1 + z5) Γ(z2 − z5) Γ(z3 + z5)

× Γ(z1 + z2 + z4) Γ(z2 + z3 + z4) Γ(z2 + z4 + z5) Γ(1 − z2 − z4 − z5) . (3.16)

Decomposing the wIJ variables in terms of exponentials of cusp angles, wIJ = cosh βIJ =

(αIJ + α−1
IJ )/2 with αIJ ≡ eβIJ , we can convert the factors (2wIJ)2zK into powers of

αIJ by introducing three more Mellin-Barnes parameters. By applying Barnes’ Lemmas

repeatedly, we can then reduce the representation (3.16) to a three-fold one:

I(w12, w23, w31) = 2(w23 w31 + w12)
1

(2πi)3

∫ +i∞

−i∞

dz1 dz2 dz3 α−2z3

12 α−1−2z1

23 α−1−2z2
31

× Γ(−z1 − z3) Γ(1 + z1 − z3) Γ(−z1 + z3) Γ(1 + z1 + z3)

× Γ2(−z2 − z3) Γ2(1 + z2 − z3) Γ2(−z2 + z3) Γ2(1 + z2 + z3) .

(3.17)

The remaining integrals can be performed by closing the contours and summing up the

residues. The resulting expression for I is rather complicated, but the totally anti-

symmetrized sum needed in (3.14) turns out to be amazingly simple:

F
(2) non−planar
1 = −4

3

∑

I,J,K

ǫIJK β2
IJ βKI coth βKI . (3.18)

In dealing with the Mellin-Barnes representations we have used the program package

MB [36] and associated packages found on the MB Tools web page [37]. We have checked

the answer for this diagram numerically using sector decomposition [38]. We have also

checked that for Euclidean velocities our result for the triple-gluon diagram agrees numer-

ically with a position-space based integral representation derived in [25]. Combining all

contributions, we finally find

F
(2)
1 (β12, β23, β31) =

4

3

∑

I,J,K

ǫIJK g(βIJ )βKI coth βKI , (3.19)
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where we have introduced the function

g(β) = coth β

[

β2 + 2β ln(1 − e−2β) − Li2(e
−2β) +

π2

6

]

− β2 − π2

6
. (3.20)

The constant term −π2/6 has been added by hand, so that g(β) vanishes for β → ∞. Its

effect cancels in the anti-symmetrized sum over terms in (3.19).

3.3 Derivation of f2

While the three-parton contribution described by F1 is interesting on general grounds, there

are not many processes of phenomenological importance in which three massive, colored

partons are produced in a high-energy collision. For instance, searches for heavy, colored

superpartners at the LHC will most likely focus on the pair production of squarks and

gluinos. Hence, the three-parton term proportional to the function f2 in (2.5) is of greater

practical importance. This function can be obtained from the result (3.19) by writing

w23 = −σ23 v2 · p3/m3, w31 = −σ31 v1 · p3/m3 and taking the limit m3 → 0 at fixed vI · p3.

In that way, we obtain

f2

(

β12, ln
−σ23 v2 · p3

−σ31 v1 · p3

)

= 3 lim
m3→0

F1(β12, β23, β31) . (3.21)

Starting from the expression for F
(2)
1 given earlier, we immediately derive the two-

loop coefficient

f
(2)
2

(

β12, ln
−σ23 v2 · p3

−σ13 v1 · p3

)

= −4g(β12) ln
−σ23 v2 · p3

−σ13 v1 · p3
, (3.22)

where g(β) has been defined above. We believe it is not an accident that the function f2

is linear in its second argument, but that this feature persists to all orders of perturbation

theory. The reason is that the logarithm

ln
−σ23 v2 · p3

−σ13 v1 · p3
≡ ln

−2σ23 v2 · p3

µ
− ln

−2σ13 v1 · p3

µ
(3.23)

is really the difference of two divergent collinear logarithms, and in order for the scale de-

pendence to cancel between terms depending on one of the two logarithms, the dependence

should be single logarithmic.

3.4 Properties of the universal functions

We finish this section by collecting some useful properties of the three-parton correlation

functions. We first note that, at least to two-loop order, we can rewrite the above relations

in the suggestive form

F1(β12, β23, β31) =
1

3

∑

I,J,K

ǫIJK
αs

4π
g(βIJ ) γcusp(βKI , αs) ,

f2

(

β12, ln
−σ23 v2 · p3

−σ13 v1 · p3

)

= −αs

4π
g(β12) γcusp(αs) ln

−σ23 v2 · p3

−σ13 v1 · p3
,

(3.24)
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where γcusp(β, αs) and γcusp(αs) are the cusp anomalous dimensions entering the two-parton

terms in (2.5), and at one-loop order

γcusp(β, αs) = γcusp(αs) r(β) , with r(β) = β coth β , (3.25)

where γcusp(αs) has been given in (2.9). Whether a factorization of the three-parton terms

into a cusp anomalous dimension times a function of another cusp angle persists at higher

orders of perturbation theory is an interesting open question.

It is useful to have expressions for the functions F1 and f2 in terms of the recoil

variables wIJ = cosh βIJ . These follow from

r(β(w)) =
w√

w2 − 1
ln
(

w +
√

w2 − 1
)

,

g(β(w)) =
w√

w2 − 1

{

ln
(

w +
√

w2 − 1
)

ln
4(w2 − 1)

w +
√

w2 − 1
− Li2

[(

w −
√

w2 − 1
)2 ]

+
π2

6

}

− ln2
(

w +
√

w2 − 1
)

− π2

6
. (3.26)

These functions are real for space-like w ≥ 1, while for time-like w ≤ −1 they have

discontinuities given by

1

π
Im r(β(w)) = θ(−w − 1)

w√
w2 − 1

,

1

π
Im g(β(w)) = θ(−w − 1)

[

w√
w2 − 1

ln
[

4(w2 − 1)
]

+ 2 ln
(

− w +
√

w2 − 1
)

]

.

(3.27)

Here w is always defined with imaginary part −i0, see (2.6). The function f2 has further

discontinuities in the logarithm given in (3.23), provided that one of the scalar products

v1 · p3 or v2 · p3 is time-like and the other one is space-like. In figure 2 we show the real

and imaginary parts of r(β(w)) and g(β(w)) as functions of w = cosh β.

It is also interesting to expand about the zero-recoil point (w = 1, β = 0) and the

threshold point (w = −1, β = iπ). For the functions r and g near zero recoil, we find (with

w = 1 + β2/2 + β4/24 + . . . , β ≥ 0)

r(β) = 1 +
β2

3
− β4

45
+ O(β6) ,

g(β) =

(

2 − π2

6

)

− β2

9
+

14β4

675
+ O(β6) .

(3.28)

To expand the functions F1 and f2 themselves, we first note that at zero recoil β12 = 0 and

β23 = iπ − β31. Then, from (3.28) and the relations

r(iπ − β) = r(β) − iπ coth β ,

g(iπ − β) = g(β) − 2iπ coth β ln(1 − e−2β) − (π2 + 2iπβ)(coth β − 1) ,
(3.29)

we find that for w12 → 1

lim
β12→0

F1(β12, β23, β31) =
α2

s

12π2

[

π2A(β31) + iπ B(β31)
]

,

lim
β12→0

f2

(

β12, ln
−σ23 v2 · p3

−σ13 v1 · p3

)

= −σ13
α2

s

4π2
iπ

(

2 − π2

6

)

,

(3.30)
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g
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(w
))

Figure 2. Graphical representation of the functions r(β(w)) and g(β(w)). Real parts are shown

as solid lines, while imaginary parts, existing for w < −1, are shown as dashed lines. The regions

w ≥ 1 and w ≤ −1 correspond to space-like and time-like scattering, respectively. The shaded

region −1 < w < 1 corresponds to Euclidean velocity vectors.

where

A(β) = (coth β − 1)(β coth β − 1) , (3.31)

B(β) = coth2 β

[

Li2(e
−2β) − π2

6
+ β2

]

+ 2coth β

[

1 − β − β2

2
− ln

(

1 − e−2β
)

]

+ 2β .

We will make use of these results when studying elastic quark-quark scattering in section 5.

Near threshold, the expansion of the functions r and g is (with w = −1−b2/2−b4/24+

. . . , b ≥ 0, and β = −b + iπ)

r(β) = − iπ

b
+ 1 − iπb

3
+

b2

3
+ O(b3) , (3.32)

g(β) = −π2 + 2iπ ln(2b)

b
+

(

2 +
5π2

6

)

− π2 + 2iπ ln(2b) − 5iπ

3
b − b2

9
+ O(b3) .

Based on the symmetry properties of F1(βIJ , βJK , βKI) and f2(βIJ , ln −σJk vJ ·pk

−σIk vI ·pk
), it was

concluded in [25, 26] that these functions vanish whenever two of the 4-velocities of the

massive partons coincide. Indeed, this seems to be an obvious consequence of the fact

that F1 is totally anti-symmetric in its arguments, while f2 is odd in its second argument.

This reasoning implicitly assumes that the limit of equal velocities is non-singular, but is

invalidated by the presence of Coulomb singularities in r(β) and g(β) near threshold. In

order to see this, consider the limit where two massive partons 1 and 2 are produced near

threshold, i.e., w12 → −1. In this case we can define the relative velocity ~v12 ≡ ~v1 − ~v2 in

the frame where the two partons have equal and opposite velocities (for m1 = m2 this is

the rest frame of the pair), and ~v2
12 = 4(w12 + 1)/(w12 − 1) = b2 + O(b4). To subleading

order in the relative velocity, we thus have

g(β12)
∣

∣

~v12→0
= −π2 + 2iπ ln(2|~v12|)

|~v12|
+

(

2 +
5π2

6

)

+ O(|~v12|) . (3.33)
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It is then straightforward to derive the following limiting expressions valid near threshold

(i.e., for w12 → −1):

lim
β12→iπ

F1(β12, β23, β31) = −σ13
α2

s

12π2

{

[

π2 + 2iπ ln(2|~v12|)
]

r′(β31) − iπ g′(β31)
}

×
(

~v12

|~v12|
· ~v3

|~v3|

)

+ O(α3
s) ,

lim
β12→iπ

f2

(

β12, ln
−σ23 v2 · p3

−σ13 v1 · p3

)

=
α2

s

4π2

[

π2 + 2iπ ln(2|~v12|)
] ~v12

|~v12|
· ~p3

|~p3|
+ O(α3

s) .

(3.34)

In both cases the scalar products of the unit vectors are nothing but cos θ, where θ is the

scattering angle formed by the momenta of particles 1 and 3. In the first relation the

primes denote derivatives with respect to β31. The second relation is recovered from the

first one using (3.21) and noting that (−σ13) r′(β31) → 1 for |β31| → ∞. The above results

are anti-symmetric in the parton indices 1 and 2 as required (note that β13 = β23), but

they do not vanish in the threshold limit. On the contrary, they diverge logarithmically in

this limit.

3.5 Limit of small parton masses

A particularly interesting limit is that of large recoil, where all the scalar products wIJ

become large in magnitude. According to the definition wIJ = −sIJ/(2mImJ), this limit

corresponds to mImJ → 0 at fixed sIJ . In this case, we find for the non-planar contribution

in (3.18)

F
(2) non−planar
1 =−4

3
ln

w12

w23
ln

w23

w31
ln

w31

w12
(3.35)

+
∑

I,J,K

ǫIJK
ln(2wKI)

3w2
IJ

[

2 ln(2wIJ)
(

ln(2wKI)+1
)

−ln(2wKI)
]

+O
( 1

w3

)

.

Similarly, the planar two-loop plus counterterm contributions in (3.12) can be expanded as

F
(2) planar+CT
1 =

4

3
ln

w12

w23
ln

w23

w31
ln

w31

w12
(3.36)

+
∑

I,J,K

ǫIJK
ln(2wKI)

3w2
IJ

[

2 ln2(2wIJ ) − 2 ln(2wIJ )
(

ln(2wKI) + 2
)

+ ln(2wKI) +
π2

3
− 1

]

+ O
( 1

w3

)

.

Note that the leading terms in these expressions are unsuppressed, but they cancel in the

sum of the two contributions. We then obtain

F
(2)
1 (β12, β23, β31) =

∑

I,J,K

ǫIJK
2 ln(2wKI)

3w2
IJ

[

ln2(2wIJ ) − ln(2wIJ ) +
π2

6
− 1

2

]

+ O
( 1

w3

)

,

(3.37)
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which can of course also be obtained directly from (3.19). We see that F1 vanishes in the

limit |wIJ | → ∞. Similarly, in the limit of large recoil we have

f
(2)
2

(

β12, ln
−σ23 v2 · p3

−σ13 v1 · p3

)

=− 2

w2
12

[

ln2(2w12)−ln(2w12)+
π2

6
− 1

2

]

ln
−σ23 v2 · p3

−σ13 v1 · p3
+O

( 1

w3
12

)

.

(3.38)

It follows from these expressions that the three-parton correlation terms described by

F1 and f2 vanish like (mImJ/sIJ)2 in the small-mass limit. This finding is in accordance

with a factorization theorem proposed in [21, 22], which states that massive amplitudes in

the small-mass limit can be obtained from massless ones by a simple rescaling prescription

for the massive external legs. From (2.5), (2.11), and (3.37) we conclude that corrections

to this simple factorization theorem are suppressed by two powers of mImJ/sIJ . More

specifically, we find that in the small-mass limit (see also the corresponding discussion for

the two-parton terms in [26])

Γ({p}, {m}, µ) = Γ({p}, µ) +
∑

I

[

CI γcusp(αs) ln
µ

mI
+ ∆γI(αs)

]

+O
(

m2
Im

2
J

s2
IJ

)

, (3.39)

where Γ({p}, µ) is the anomalous-dimension matrix in the massless case, and ∆γQ(αs) ≡
γQ(αs)−γq(αs) (and similarly for hypothetical, heavy color-octet partons) is the difference

of the single-parton anomalous dimensions belonging to massive and massless quarks. The

extra terms give rise to one-particle ZI factors for each massive parton involved in the

scattering process. As explained in [26], in the limit of small parton masses the product
∏

I Z−1
I removes the IR poles in the ratio of the massive to massless amplitudes (without

including loops of heavy partons2). We emphasize that such a simple procedure will no

longer work when O(m2
Im

2
J/s2

IJ) corrections are included, since in this case novel IR poles

with non-trivial color and momentum correlations arise.

4 IR singularities in top-quark pair production

As a first application, we employ our formalism to calculate the two-loop anomalous-

dimension matrices for top-quark pair production in the qq̄ → tt̄ and gg → tt̄ channels and

use them to construct the IR poles in the virtual corrections to these processes at two-loop

order. These anomalous-dimension matrices form the basis for soft-gluon resummation

at the next-to-next-to-leading logarithmic (NNLL) order for generic kinematics, i.e., not

necessarily restricted to the threshold region.

4.1 Anomalous-dimension matrices

The first step is to derive the explicit form of the anomalous-dimension matrix (2.5) in a

given color basis for the partonic amplitudes (see, e.g., [5, 39]). We adopt the s-channel

singlet-octet basis, in which the tt̄ pair is either in a color-singlet or color-octet state. For

2One can account for heavy-parton loops by applying the inverse of the decoupling relation (2.3) to the

combined Z factor, see section 4.2.
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the quark-antiquark annihilation process ql(p1) + q̄k(p2) → ti(p3) + t̄j(p4), we thus choose

the independent color structures as

|c1〉 = δij δkl , |c2〉 = (ta)ij (ta)kl . (4.1)

For the gluon fusion process ga(p1) + gb(p2) → ti(p3) + t̄j(p4), we use the basis

|c1〉 = δab δij , |c2〉 = ifabc (tc)ij , |c3〉 = dabc (tc)ij . (4.2)

Here a, b, i, j, k, l are color indices. We find that the anomalous-dimension matrix for the

qq̄ channel can be written in the form

Γqq̄ =

[

CF γcusp(αs) ln
−s

µ2
+ CF γcusp(β34, αs) + 2γq(αs) + 2γQ(αs)

]

1

+
N

2

[

γcusp(αs) ln
(−s13)(−s24)

(−s)m2
t

− γcusp(β34, αs)

]

(

0 0

0 1

)

+ γcusp(αs) ln
(−s13)(−s24)

(−s14)(−s23)

[(

0 CF

2N

1 − 1
N

)

+
αs

4π
g(β34)

(

0 CF

2

−N 0

)]

+ O(α3
s) ,

(4.3)

where s ≡ s12 is the square of the partonic center-of-mass energy. The term proportional

to g(β34) stems from the three-parton contributions

−
[

f2

(

β34, ln
−s13

−s14

)

+ f2

(

β34, ln
−s24

−s23

)

]

(

0 CF

2

−N 0

)

. (4.4)

With the help of the second relation in (3.24) this can be recast into the product of g(β34)

times a conformal cross ratio [14] of four momentum invariants. Similarly, for the gg

channel we obtain

Γgg =

[

N γcusp(αs) ln
−s

µ2
+ CF γcusp(β34, αs) + 2γg(αs) + 2γQ(αs)

]

1

+
N

2

[

γcusp(αs) ln
(−s13)(−s24)

(−s)m2
t

− γcusp(β34, αs)

]







0 0 0

0 1 0

0 0 1






(4.5)

+γcusp(αs) ln
(−s13)(−s24)

(−s14)(−s23)













0 1
2 0

1 −N
4

N2−4
4N

0 N
4 −N

4






+

αs

4π
g(β34)







0 N
2 0

−N 0 0

0 0 0












+O(α3

s).

When deriving these results we did not impose momentum conservation. Therefore, they

can also be used for processes involving additional colorless particles such as electroweak

gauge bosons or Higgs bosons.

The above anomalous-dimension matrices are the ingredients needed for soft-gluon

resummation at NNLL order for general kinematics, a topic which we leave for future

work. An interesting limit, which is often discussed in the literature, is the threshold limit

s → 4m2
t . For this purpose it is convenient to define the quantity βt =

√

1 − 4m2
t /s, which
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is related to the relative 3-velocity ~vtt̄ between the top-quark pair in the center-of-mass

frame by |~vtt̄| = 2βt. The kinematical invariants can be expressed in terms of βt and the

scattering angle θ between partons 1 and 3 in this frame according to

β34 = iπ−ln
1 + βt

1 − βt
, s13 = s24 = −s

2
(1−βt cos θ) , s14 = s23 = −s

2
(1+βt cos θ) . (4.6)

Using the expansions in (3.32), we find that in the threshold limit βt → 0 the two-loop

anomalous-dimension matrices reduce to

Γqq̄ =

[

CF γcusp(αs)

(

ln
s

µ2
− iπ

2βt
− iπ + 1

)

+ CF γ(2)
cusp(βt) + 2γq(αs) + 2γQ(αs)

]

1

+
N

2

[

γcusp(αs)

(

iπ

2βt
+ iπ − 1

)

− γ(2)
cusp(βt)

]

(

0 0

0 1

)

+
α2

s

2π2

[

π2 + 2iπ ln(4βt)
]

cos θ

(

0 CF

2

−N 0

)

+ O(βt) + O(α3
s) ,

(4.7)

and

Γgg =

[

γcusp(αs)

{

N

(

ln
s

µ2
−iπ

)

− CF

(

iπ

2βt
−1

)}

+CF γ(2)
cusp(βt)+2γg(αs)+2γQ(αs)

]

1

+
N

2

[

γcusp(αs)

(

iπ

2βt
+ iπ − 1

)

− γ(2)
cusp(βt)

]







0 0 0

0 1 0

0 0 1






(4.8)

+
Nα2

s

2π2

[

π2 + 2iπ ln(4βt)
]

cos θ







0 1
2 0

−1 0 0

0 0 0






+ O(βt) + O(α3

s) ,

where the two-loop expression for γcusp(αs) has been given in (2.9), and

γ(2)
cusp(βt) =

Nα2
s

2π2

[

iπ

2βt

(

2 − π2

6

)

− 1 + ζ3

]

(4.9)

arises from the threshold expansion of the two-loop coefficient of the recoil-dependent cusp

anomalous dimension in (2.10).

We stress the important fact that, as a consequence of the Coulomb singularities

present in the function g(β), the three-parton correlation terms governed by f2 do not

vanish near threshold. Instead, they give rise to scattering-angle dependent, off-diagonal

contributions in (4.7) and (4.8). These off-diagonal terms were not considered in two recent

papers [40, 41], where threshold resummation for top-quark pair production was studied at

NNLL order. Explicit results equivalent to the threshold-expanded anomalous-dimension

matrices (4.7) and (4.8) were given in [41]. We agree with those expressions up to the

terms originating from f2. We leave it to future work to explore if and how the results

obtained by these authors need to be modified in light of our findings.
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4.2 IR poles in the qq̄ → tt̄ and gg → tt̄ scattering amplitudes

The results (4.3) and (4.5) for the anomalous-dimension matrices allow us to construct the

IR divergences in the virtual corrections to the partonic amplitudes for top-quark pair pro-

duction at two-loop order. The key relation is that the IR poles in the partonic scattering

amplitudes can be absorbed into a multiplicative renormalization factor, as shown in (3.8).

Expanding this relation in powers of αs/4π yields

|M(1), sing
n 〉 = Z(1) |M(0)

n 〉 ,

|M(2), sing
n 〉 =

[

Z(2) −
(

Z(1)
)2
]

|M(0)
n 〉 +

(

Z(1) |M(1)
n 〉
)

poles
,

(4.10)

where we have written the UV-renormalized QCD amplitudes as

|Mn〉 = 4παs

[

|M(0)
n 〉 +

αs

4π
|M(1)

n 〉 +
(αs

4π

)2
|M(2)

n 〉 + . . .

]

. (4.11)

Note that to predict the IR poles at two-loop order, one needs the UV-renormalized one-

loop amplitudes to O(ǫ), since these terms combine with the 1/ǫ2 piece of the one-loop Z

factor to give a 1/ǫ pole term.

In evaluating the relations (4.10), one must make sure that the UV-renormalized am-

plitudes and the Z factors are expressed in terms of one and the same coupling constant.

As mentioned in section 2, one possibility is to express all results in terms of αs defined

with five active flavors, by applying the decoupling relation (2.3) to the UV-renormalized

QCD amplitudes. After doing so, any dependence on the number nh of heavy-quark flavors

drops out of the results for the pole terms. Alternatively, by applying the inverse decou-

pling relation to the coupling αs in the Z factors, one can express the perturbative series

in terms of αQCD
s defined in full QCD with six active flavors (nh = 1 for the top quark, and

nl = 5 for the remaining quarks). One then recovers the full nh dependence in the singular

parts of the QCD amplitudes. At the level of the renormalization factor, the conversion

to six active flavors is accomplished by adding an additional piece to the expression given

in [10, 16]. At two-loop order, we find the general result

Z =1 +
αQCD

s

4π

(

Γ′
0

4ǫ2
+

Γ0

2ǫ

)

+

(

αQCD
s

4π

)2{

(Γ′
0)

2

32ǫ4
+

Γ′
0

8ǫ3

(

Γ0 −
3

2
β0

)

+
Γ0

8ǫ2
(Γ0 − 2β0) +

Γ′
1

16ǫ2
+

Γ1

4ǫ

− 2TF

3

nh
∑

i=1

[

Γ′
0

(

1

2ǫ2
ln

µ2

m2
i

+
1

4ǫ

[

ln2 µ2

m2
i

+
π2

6

])

+
Γ0

ǫ
ln

µ2

m2
i

]}

+ O(α3
s) .

(4.12)

The coefficients Γn are defined via the expansion

Γ =
∑

n≥0

Γn

(αs

4π

)n+1
, (4.13)

and similarly for the quantity Γ′ = −2Ci γcusp(αs), where Ci = CF for the qq̄ channel, and

Ci = CA for the gg channel. The f2 term enters the two-loop 1/ǫ pole via Γ1/ǫ in (4.12).
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We emphasize that in the β-function coefficient β0 = 11
3 CA − 4

3 TF nl and in the two-loop

anomalous-dimension coefficients Γ1 and Γ′
1 in (4.12) the number nl of active flavors only

includes the massless quarks, not the massive ones. The nh dependence of the full-theory

Z factor is contained entirely in the terms shown in the third line.

The result (4.10) is an exact prediction for the IR poles of the partonic amplitudes at

two-loop order, which can be tested against explicit loop calculations. In practice, however,

one is interested mainly in the real part of the interference terms 〈M(0)
n |M(2)

n 〉, since it is

these which are needed to calculate partonic cross sections. For this reason, we give results

for the interference terms rather than the amplitudes themselves. For the specific case of

tt̄ production, the full results for both the qq̄ and gg channels are rather lengthy and are

included as a computer program in the electronic version of this paper. In what follows,

we will define the color decomposition used at two-loop order and describe to what extent

we can compare our results with those available in the literature. As explained below, the

three-parton correlations proportional to f2 do not appear in the interference of the Born

level and two-loop amplitudes, neither in the qq̄ channel nor in the gg channel.

For the qq̄ → tt̄ channel, the result for the interference term between the Born and

two-loop amplitudes can be decomposed into color structures according to [42]

2Re 〈M(0)|M(2)〉qq̄ = 2(N2 − 1)

(

N2Aq + Bq +
1

N2
Cq + Nnl D

q
l + Nnh Dq

h (4.14)

+
nl

N
Eq

l +
nh

N
Eq

h + n2
l F

q
l + nlnh F q

lh + n2
hF q

h

)

.

To compute the IR poles in the color coefficients above, we evaluate the general re-

lation (4.10) using (4.12) for the renormalization factor and (4.3) for the anomalous-

dimension matrix. In addition, we need the finite parts of the UV-renormalized one-loop

QCD amplitude up to O(ǫ), decomposed into the singlet-octet color basis. We have ob-

tained these through direct calculation, using some of the master integrals computed in [43].

After enforcing momentum conservation, the color coefficients are functions of the invari-

ants s = s12, t1 = s13 = s24, mt, and µ. We have verified that our results for the IR poles

agree with the numerical ones from [42], with the analytic results for some of the color

coefficients given in [44, 45], and with the results in the small-mass limit from [23]. In our

case, all pole coefficients are available in analytic form. Since the Born-level qq̄ → tt̄ ampli-

tude is proportional to the color-octet structure in (4.1) and the three-parton correlations

proportional to f2 enter the anomalous-dimension matrix (4.3) only in the off-diagonal

terms, the contributions from f2 in the squared matrix element first appears at three-loop

order. This was noted independently in [41].

For the gg → tt̄ channel, we follow [24] and decompose the interference term between

the Born and two-loop amplitudes into color structures as

2Re 〈M(0)|M(2)〉gg = (N2 − 1)

(

N3Ag + N Bg +
1

N
Cg +

1

N3
Dg (4.15)

+N2nl E
g
l + N2nh Eg

h + nl F
g
l + nh F g

h +
nl

N2
Gg

l +
nh

N2
Gg

h

+Nn2
l H

g
l + Nnlnh Hg

lh + Nn2
hHg

h +
n2

l

N
Ig
l +

nlnh

N
Ig
lh +

n2
h

N
Ig
h

)

.
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ǫ−4 ǫ−3 ǫ−2 ǫ−1

Ag 10.749 18.694 −156.82 262.15

Bg −21.286 −55.990 −235.04 1459.8

Cg −6.1991 −68.703 −268.11

Dg 94.087 −130.96

Eg
l −12.541 18.207 27.957

Eg
h 0.012908 11.793

F g
l 24.834 −26.609 −50.754

F g
h 0.0 −23.329

Gg
l 3.0995 67.043

Gg
h 0.0

Hg
l 2.3888 −5.4520

Hg
lh −0.0043025

Hg
h

Ig
l −4.7302 10.810

Ig
lh 0.0

Ig
h

Table 1. Numerical results for the IR poles in the color coefficients (4.15) for top-quark pair

production in the gg → tt̄ channel, evaluated at the point t1 = −0.45s, s = 5m2
t
, and µ = mt.

The blank entries are not present in general, while the entries with value 0.0 vanish only for the

particular choice µ = mt.

The IR poles in the color coefficients are obtained as for the qq̄ channel, except in this case

we use the anomalous-dimension matrix (4.5). Results in the literature are available only in

the small-mass limit [24], and we have checked the agreement of our exact results with this

limiting case. Since the exact results are new, we list in table 1 the numerical values for the

poles of the color coefficients at the point t1 = −0.45s, s = 5m2
t , and µ = mt. Again in this

case the results do not depend on f2, the reason being that the corresponding contribution

is multiplied by a color structure which is anti-symmetric under the exchange of the two

initial-state gluons, while the gg → tt̄ amplitude is symmetric under this exchange.

5 Elastic quark-quark scattering in the forward limit

Another interesting application of our general formalism is the case of elastic quark-quark

scattering at high energy and fixed momentum transfer (s,m2 ≫ |t|). The anomalous-

dimension matrix for this case was analyzed at two-loop order in [28] by studying the cross

singularities of self-intersecting Wilson loops. We will now show that the results derived in

that paper can be obtained by taking a certain limit of our general results, and that this

provides a cross-check on our calculation of the three-parton correlations governed by the

function F1.

Consider the elastic process q1j(p1) + q2l(p2) → q1i(p3) + q2k(p4) for massive quarks
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(m1 = m2 ≡ m) in the forward limit

s, m2 ≫ −t ≫ Λ2
QCD . (5.1)

Here i, j, k, l are color indices, and 1,2 label the quark flavors. The relevant cusp angles

can be expressed in terms of the invariants s = (p1 + p2)
2 and t = (p1 − p3)

2 as

β12 = β34 = arccosh

(

−s − 2m2

2m2

)

≡ iπ − γ ,

β13 = β24 = arccosh

(

2m2 − t

2m2

)

= O
(√

−t

m

)

,

β14 = β23 = arccosh

(

s + t − 2m2

2m2

)

= γ + O
(

t

m2

)

,

(5.2)

where cosh γ = v1 · v2 = p1 · p2/m
2. In the limit t/m2 → 0 these angles are described in

terms of a single variable γ > 0. Starting from the general expression (2.5), we then obtain

for the cross anomalous-dimension matrix

Γcross(γ, αs) ≡ Γqq(s, t,m
2, µ)

∣

∣

−t≪s,m2 (5.3)

= −2
[

T1 · T2 γcusp(iπ − γ, αs) + T1 · T3 γcusp(0, αs) + T1 · T4 γcusp(γ, αs)
]

+4γQ(αs) + 24ifabc T a
1 T b

2 T c
3 F1(iπ − γ, γ, 0) + O(α3

s) ,

where we have used color conservation to simplify the various terms. The velocity-

dependent cusp anomalous dimension γcusp(β, αs) has been given in (2.10). Moreover,

noting that the case at hand corresponds to the zero-recoil limit discussed in section 3.4,

we can read off F1 from (3.30):

F1(iπ − γ, γ, 0) =
α2

s

12π2

[

π2A(γ) + iπ B(γ)
]

, (5.4)

where A and B were defined in (3.31).

To give explicit results for the anomalous-dimension matrix (5.3), we must first specify

a color basis. We shall use the t-channel singlet-octet basis, where the two color struc-

tures are

|c1〉 = δij δkl , |c2〉 = taij takl . (5.5)

In this basis, the result for the cross anomalous dimension valid to two-loop order is
[

Γcross(γ)
]

11
= 0 , (5.6)

[

Γcross(γ)
]

12
=

CF

N

[

γcusp(γ, αs) − γcusp(iπ − γ, αs)
]

+ 6CF F1(iπ − γ, γ, 0) ,
[

Γcross(γ)
]

21
= 2

[

γcusp(γ, αs) − γcusp(iπ − γ, αs)
]

− 12NF1(iπ − γ, γ, 0) ,

[

Γ(2)
cross(γ)

]

22
=

2

N

[

γcusp(iπ − γ, αs) − γcusp(γ, αs)
]

+ N
[

γcusp(γ, αs) − γcusp(0, αs)
]

.

We have simplified the diagonal matrix elements using that 4γQ(αs) = −2CF γcusp(0, αs),

which follows from the expression for the anomalous dimension of a heavy-quark current
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derived in [26]. Expanding the cross anomalous dimension as (this conforms with the

notation used in [28])

Γcross(γ, αs) =
αs

π
Γ(1)

cross(γ) +
(αs

π

)2
Γ(2)

cross(γ) + . . . , (5.7)

the explicit one-loop result is

Γ(1)
cross(γ) =

(

0 CF

N
iπ coth γ

2iπ coth γ N(γ coth γ − 1) − 2iπ
N

coth γ

)

, (5.8)

whereas at two-loop order we obtain

[

Γ(2)
cross(γ)

]

11
= 0 ,

[

Γ(2)
cross(γ)

]

12
= CF

[

π2A(γ) + iπ

(

B(γ) +

[

31

36
− 5TF

9N
nl

]

coth γ

)]

,

[

Γ(2)
cross(γ)

]

21
= N

(

31

18
− 10TF

9N
nl

)

iπ coth γ ,

[

Γ(2)
cross(γ)

]

22
=

N2

2

{

coth2 γ

[

Li3(e
−2γ) + γ Li2(e

−2γ) − ζ3 +
π2

6
γ +

γ3

3

]

(5.9)

+ coth γ

[

Li2(e
−2γ) − 2γ ln(1 − e−2γ) − π2

6
+

(

67

18
− π2

3

)

γ − γ2 − γ3

3

]

+ γ2 +
π2

3
− 49

18

}

− 5

9
NTF nl (γ coth γ − 1)

− π2A(γ) − iπ

(

B(γ) +

[

31

18
− 10TF

9N
nl

]

coth γ

)

.

In deriving these expressions we have used the remarkable relation

γcusp(γ, αs) − γcusp(iπ − γ, αs) = iπ coth γ

[

αs

π
+
(αs

π

)2
(

31

36
N − 5

9
TF nl

)]

+ 6NF1(iπ − γ, γ, 0) + O(α3
s) ,

(5.10)

which links the complicated γ-dependent terms in the difference of cusp anomalous dimen-

sions to those in F1(iπ − γ, γ, 0). In order to compare with the expressions given in [28],

we must convert our results to the color basis

|c′1〉 = δij δkl , |c′2〉 = δil δkj . (5.11)

Results in that basis can be obtained from ours by the rotation

Γ′
cross(γ, αs) = V Γcross(γ, αs)V −1, (5.12)

where

V =

(

1 − 1
2N

0 1
2

)

, V −1 =

(

1 1
N

0 2

)

. (5.13)
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After performing this conversion, we find complete agreement with the results in [28].3

Since at two-loop order the off-diagonal elements in (5.6) receive contributions from F1,

this is a non-trivial check on our general result for this function.

6 Conclusions

The IR divergences of scattering amplitudes in non-abelian gauge theories can be absorbed

into a multiplicative renormalization factor, whose form is determined by an anomalous-

dimension matrix in color space. At two-loop order this anomalous-dimension matrix

contains pieces related to color and momentum correlations between three partons, as long

as at least two of them are massive. This information is encoded in two universal functions:

F1, describing correlations between three massive partons, and f2, describing correlations

between two massive and one massless parton. In this paper we have calculated these

functions at two-loop order. For F1, this involved extracting the UV divergences of the

vacuum matrix element of an HQET operator built out of three soft Wilson lines. The most

complicated technical aspect of the calculation was the evaluation of a non-planar two-loop

diagram, which we accomplished using Mellin-Barnes representations. The function f2 was

then obtained from F1 by taking the limit where one of the three partons becomes massless.

Using the exact analytic expressions, we studied the properties of the three-parton

correlations in the small-mass, zero-recoil, and threshold limits. We found that the func-

tions F1 and f2 vanish as (mImJ/sIJ)2 in the small-mass limit, in accordance with existing

factorization theorems for massive scattering amplitudes [21, 22]. On the other hand, and

contrary to naive expectations, the two functions do not vanish in the threshold limit, where

the velocities of two heavy partons become nearly equal. The reason is that Coulomb sin-

gularities arise in this limit, which compensate a zero resulting from the anti-symmetry

under exchange of two velocity vectors.

Our results allow for the calculation of the IR poles of an arbitrary on-shell, n-particle

scattering amplitude at two-loop order, where any number of the n partons can be massive.

As an application, we have derived the anomalous-dimension matrices for top-quark pair

production (in association with colorless particles such as electroweak or Higgs bosons)

in the qq̄ → tt̄ and gg → tt̄ channels. These matrices form the basis for soft-gluon re-

summation at NNLL order for general kinematics, and in particular near the production

threshold. We will explore in future work to what extent the new off-diagonal entries in the

anomalous-dimension matrices, arising from the three-parton correlation terms, affect the

numerical results for tt̄ production at the Tevatron and LHC. Finally, we have used these

matrices to determine the IR poles in the virtual corrections to the tt̄ production cross

sections at two-loop order in closed analytic form. The corresponding expressions, which

agree with those in the literature where they exist, are very lengthy and are provided in

the form of a computer program.

3The cross anomalous dimension calculated here is the transpose of that in [28], due to a different

ordering of the matrices in the renormalization-group equation (3.5) compared to eq. (2.9) in that paper.

Also, these authors set nl = 0.
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As a second interesting application, we have studied the elastic quark-quark scattering

amplitude in the forward limit, where s,m2 ≫ |t|. In this special case, our general expres-

sion for the anomalous-dimension matrix reduces to the cross anomalous dimension studied

a long time ago in [28]. Since the three-parton correlation terms in the anomalous dimen-

sion give a non-zero contribution in this example, the fact that we find full agreement with

the two-loop expressions given in that paper provides a non-trivial check of our calculation.

The present paper completes the study of IR divergences of two-loop scattering ampli-

tudes with an arbitrary number of massive and massless external particles, and in arbitrary

non-abelian (or abelian) gauge theories with massless gauge bosons. In spontaneously bro-

ken gauge theories, our results can still be used above the symmetry-breaking scale, where

gauge-boson masses can be neglected at leading power. At the symmetry-breaking scale

a matching is done onto a non-interacting theory, in which the massive gauge bosons are

integrated out. In this way, it is possible to resum electroweak Sudakov logarithms using

effective-theory methods, as worked out in detail in [46]. The next step should now be to

apply these general results to specific hadron-collider processes.

Acknowledgments

We are grateful to Gregory Korchemsky for pointing out the relevance of [28], which serves

as a non-trivial check of our results. We would like to thank Thomas Becher, David Broad-

hurst, Johannes Henn, Jürgen Körner, and Sven Moch for useful discussions. B.P. is sup-

ported by the State of Rhineland-Palatinate via the Research Centre “Elementary Forces

and Mathematical Foundations”.

References

[1] J.C. Collins, D.E. Soper and G. Sterman, Factorization of hard processes in QCD, Adv. Ser.

Direct. High Energy Phys. 5 (1988) 1 [hep-ph/0409313] [SPIRES].

[2] G. Sterman, Summation of large corrections to short distance hadronic cross-sections,

Nucl. Phys. B 281 (1987) 310 [SPIRES].

[3] S. Catani and L. Trentadue, Resummation of the QCD perturbative series for hard processes,

Nucl. Phys. B 327 (1989) 323 [SPIRES].

[4] H. Contopanagos, E. Laenen and G. Sterman, Sudakov factorization and resummation,

Nucl. Phys. B 484 (1997) 303 [hep-ph/9604313] [SPIRES].

[5] N. Kidonakis and G. Sterman, Resummation for QCD hard scattering,

Nucl. Phys. B 505 (1997) 321 [hep-ph/9705234] [SPIRES].

[6] S. Catani, The singular behaviour of QCD amplitudes at two-loop order,

Phys. Lett. B 427 (1998) 161 [hep-ph/9802439] [SPIRES].

[7] S.M. Aybat, L.J. Dixon and G. Sterman, The two-loop anomalous dimension matrix for soft

gluon exchange, Phys. Rev. Lett. 97 (2006) 072001 [hep-ph/0606254] [SPIRES].

[8] S.M. Aybat, L.J. Dixon and G. Sterman, The two-loop soft anomalous dimension matrix and

resummation at next-to-next-to leading pole, Phys. Rev. D 74 (2006) 074004

[hep-ph/0607309] [SPIRES].

– 24 –

http://arxiv.org/abs/hep-ph/0409313
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0409313
http://dx.doi.org/10.1016/0550-3213(87)90258-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B281,310
http://dx.doi.org/10.1016/0550-3213(89)90273-3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B327,323
http://dx.doi.org/10.1016/S0550-3213(96)00567-6
http://arxiv.org/abs/hep-ph/9604313
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9604313
http://dx.doi.org/10.1016/S0550-3213(97)00506-3
http://arxiv.org/abs/hep-ph/9705234
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9705234
http://dx.doi.org/10.1016/S0370-2693(98)00332-3
http://arxiv.org/abs/hep-ph/9802439
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9802439
http://dx.doi.org/10.1103/PhysRevLett.97.072001
http://arxiv.org/abs/hep-ph/0606254
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0606254
http://dx.doi.org/10.1103/PhysRevD.74.074004
http://arxiv.org/abs/hep-ph/0607309
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0607309


J
H
E
P
1
1
(
2
0
0
9
)
0
6
2

[9] G. Sterman and M.E. Tejeda-Yeomans, Multi-loop amplitudes and resummation,

Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [SPIRES].

[10] T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative

QCD, Phys. Rev. Lett. 102 (2009) 162001 [arXiv:0901.0722] [SPIRES].

[11] C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear

and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336]

[SPIRES].

[12] C.W. Bauer, D. Pirjol and I.W. Stewart, Soft-collinear factorization in effective field theory,

Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [SPIRES].

[13] M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft-collinear effective theory and

heavy-to-light currents beyond leading power, Nucl. Phys. B 643 (2002) 431

[hep-ph/0206152] [SPIRES].

[14] E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD

scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [SPIRES].

[15] L.J. Dixon, Matter dependence of the three-loop soft anomalous dimension matrix,

Phys. Rev. D 79 (2009) 091501 [arXiv:0901.3414] [SPIRES].

[16] T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory

amplitudes, JHEP 06 (2009) 081 [arXiv:0903.1126] [SPIRES].

[17] J.G.M. Gatheral, Exponentiation of eikonal cross-sections in nonabelian gauge theories,

Phys. Lett. B 133 (1983) 90 [SPIRES].

[18] J. Frenkel and J.C. Taylor, Nonabelian eikonal exponentiation,

Nucl. Phys. B 246 (1984) 231 [SPIRES].

[19] D.A. Kosower, All-order collinear behavior in gauge theories, Nucl. Phys. B 552 (1999) 319

[hep-ph/9901201] [SPIRES].
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